
Thorsten Kurth, Balint Joo,
Dhiraj Kalamkar, Aaron Walden 
Karthikeyan Vaidyanathan

Optimizing
Wilson-Dirac
operator and linear
solvers for KNL

IXPUG	2016	Frankfurt,	Germany	
June	23,	2016

Lattice QCD

• Straightforward	way	to	solve	QCD	in	non-perturbative	
regime	with	quantifiable	uncertainties	

• QCD	is	discretized	on	space-time	grid	with	millions	of	DoF  
 
 
 
 

• Most	time	is	spent	in	solving	

• Optimizing	the	solvers	as	well	as								,									is	important

2

a

L

Uµ
 ̄

ZE =

Z
DUµ D D

¯

 exp

0

@�Sg[U]�
Z

R4

d

4
x

¯

 (x)D[U] (x)

1

A

=

Z
DUµ D�D�

†
exp

0

@�Sg[U]�
Z

R4

d

4
x�

†
(x)D[U]

� 1
2
�(x)

1

A

/D

(A� /D) = �

A

Dirac Operators

• Wilson	Operator 
 

3

/

D(x, y) =
3X

µ=0

U

µ

(x)(1� �

µ

)�
y,x+µ̂

+ U

†
µ

(x� µ̂)(1 + �

µ

)�
y,x�µ̂

Dirac Operators

• Wilson	Operator 
 

3

/

D(x, y) =
3X

µ=0

U

µ

(x)(1� �

µ

)�
y,x+µ̂

+ U

†
µ

(x� µ̂)(1 + �

µ

)�
y,x�µ̂

sparse,	only	NN	coupling

Dirac Operators

• Wilson	Operator 
 

3

/

D(x, y) =
3X

µ=0

U

µ

(x)(1� �

µ

)�
y,x+µ̂

+ U

†
µ

(x� µ̂)(1 + �

µ

)�
y,x�µ̂

very	sparse	Dirac	matrices,	implemented	as	functions

Dirac Operators

• Wilson	Operator 
 

3

Unitary	3x3	complex	matrices	(store	6	complex	numbers)

/

D(x, y) =
3X

µ=0

U

µ

(x)(1� �

µ

)�
y,x+µ̂

+ U

†
µ

(x� µ̂)(1 + �

µ

)�
y,x�µ̂

Dirac Operators

• Wilson	Operator 
 

• Clover	Term

3

/

D(x, y) =
3X

µ=0

U

µ

(x)(1� �

µ

)�
y,x+µ̂

+ U

†
µ

(x� µ̂)(1 + �

µ

)�
y,x�µ̂

A(x) = (Nd +m)� i

1

8
csw�µ⌫Fµ⌫(x), Fµ⌫(x) =

�i

8
(Qµ⌫(x)�Q⌫µ(x))

Qµ⌫(x) =
�µ⌫ ⌘ [�µ, �⌫]

Gattringer,	Lang:	Quantum	Chromodynamics	on	the	Lattice

Arithmetic Intensity (Naive)

• Overview	over	Dslash	key	ingredients	
‣ links	(U-matrices):	3x3	complex,	unitary	
‣ spinors:	4x4	complex	
‣ 9-point	stencil	in	4D		

• Thus:	
‣ read	8	neighboring	spinors,	8	links,	write	central	
spinor

4

naive	intensity:	0.92	flop/byte

Optimization Potential in Dslash

5

/

D(x, y) =
3X

µ=0

U

µ

(x)(1� �

µ

)�
y,x+µ̂

+ U

†
µ

(x� µ̂)(1 + �

µ

)�
y,x�µ̂

• even-odd	Schur-
preconditioning 

• streaming	in	t-direction:	 
7-of-8	neighbor	reuse	

• (temporal	blocking)	
• no	reuse	of	links	due	to	EO,	but	

use	12-reconstruction

M
oo

= A
oo

�D
oe

A�1
ee

D
eo

Smelyanski,	Vaidyanathan,	Joo,	et.	al.:	High-Performance	
Lattice	QCD	for	Multi-core	Based	Parallel	Systems	using	a	
Cache-Friendly	Hybrid	Threaded-MPI	Approach

Optimization Potential in Clover
• Clover	Term:	

‣ A:	in	general	12x12	complex	
‣ appropriate	choices	of						:											

becomes	block-diagonal,	w/2	6x6	
hermitian	blocks	

‣ 													decomposition:	 
12	reals+30	complex	numbers	
total	per	site	

‣ Inverse	term	A-1	will	be	
precomputed	and	stored	(has	
similar	structure)	

• A	costs	504	FLOPS	
• Data:	288B	(clover	term)+2x96B	

(spinors)=480B	
• AI≈1

6

�µ

L†DL

Figure	by	Joo

Performance Bounds

• R	=	no.	of	reused	input	spinors	
• r	=	0	streaming,	r	=	1	„read-for-write“	
• Br	=	read	bandwidth	
• Bw	=	write	bandwidth	
• G	=	size	of	Link	
• S	=	size	of	Spinor

7

F =
1320

8G/Br + (8�R+ r)S/Br + S/Bw

Performance Bounds

• R	=	no.	of	reused	input	spinors	
• r	=	0	streaming,	r	=	1	„read-for-write“	
• Br	=	read	bandwidth	
• Bw	=	write	bandwidth	
• G	=	size	of	Link	
• S	=	size	of	Spinor

7

R 12-compress AI	(SP)

0 no 0.92
0 yes 1.06
7 no 1.72
7 yes 2.29

F =
1320

8G/Br + (8�R+ r)S/Br + S/Bw

QPhiX Data Layout
• partial	SoA	layout	(AoSoA)	
• pack	ngy	chunks	of	length	soa from	

different	y-coordinates	
‣ vec =	vector	length	
‣ soa	=	SoA-length	
‣ ngy =	vec/soa
‣ x-extent Lxh must	be	divisible	by soa,

block	size	by must	be	divisible	by ngy
‣ load-unpack/pack-store	is	faster	than	

gather	
• gauge	fields	constant,	pre-gather	ngy	

chunks	
• padding	helps	alignment	(after	xy-planes)

8

Figure	by	Joo

B.	Joo,	Kalamkar,	D.,	Vaidyanathan	K.	et.	al.:		
Lahce	QCD	on	Intel(R)	Xeon	Phi(tm)	Coprocessors,			
ISC	2013

QPhiX Blocking
• 3.5D	blocking	

‣ vectorize	in	x	and	y,	block	
in	y	and	z,	stream	in	t	

• How	to	assign	blocks	to	cores,	
maintaining	load	balancing	
the	same	time?	

‣ multi-phase	block	
allocation:		

- more	blocks	than	
cores:	round-robin	
allocation	

- more	cores	than	
blocks:	split	in	T	to	
make	more	blocks	
than	cores

9

Figure	by	Joo

Nguyen,	A.D.,	Saksh,	N.,	Chhugani,	J.,	Kim,	C.,	Dubey,	P.:	
3.5-d	blocking	opkmizakon	for	stencil		
computakons	on	modern	cpus	and	gpus,	SC	2010

BLAS operations

• pool	BLAS	operations	to	maximize	cache	reuse	
• use	functor-based	approach	inspired	by	Kokkos

10

CopyFunctor(typename	Geometry<FT,V,S,compress>::FourSpinorBlock*	res_,		
const		typename	Geometry<FT,V,S,compress>::FourSpinorBlock*	src_);	

AXPYFunctor(const	AXPYFunctor<FT,V,S,compress>&	rhs);	

Norm2Functor(const	typename	Geometry<FT,V,S,compress>::FourSpinorBlock*	x_);	

XMYNorm2Functor(typename	Geometry<FT,V,S,compress>::FourSpinorBlock*	res_,	
const	typename	Geometry<FT,V,S,compress>::FourSpinorBlock*	x_,	

	 	 const	typename	Geometry<FT,V,S,compress>::FourSpinorBlock*	y_);

Test system: KNL-CPU

• Configuration	A:	
‣ Intel	Knight’s	Landing	B0	7250	parts	
‣ 68	cores@1.4	Ghz	

• Configuration	B:	
‣ Intel	Knight’s	Landing	B0	7210	parts	
‣ 64	cores@1.4Ghz	

• Common	features:	
‣ 4	HT	per	core,	two	512bit	VPU’s	
‣ 16	GB	MCDRAM	
‣ 96	GB	DDR	

• Used	configuration	in	both	cases:	quad-flat	
• use	KMP_PLACE_THREADS=1s<Nc>c<Nt>t

11

Results: single node KNL (A)

12

Wilson	Dslash

SOA	4

DDR

MCDRAM

SOA	8

Haswell	Dual	Socket

DDR

MCDRAM

MCDRAM	+	Sfw	+	Hw	Prefetch

MCDRAM	+	Sfw	-	Hw	Prefetch

SOA	16

DDR

MCDRAM

GFLOPS

0 150 300 450 600

1	threads
2	threads
4	threads

V=324,	by=bz=4,	pxy=pxyz=1

Results: single node KNL (A)

12

Wilson	CG

SOA	4

DDR

MCDRAM

SOA	8

Haswell	Dual	Socket

DDR

MCDRAM

MCDRAM	+	Sfw	+	Hw	Prefetch

MCDRAM	+	Sfw	-	Hw	Prefetch

SOA	16

DDR

MCDRAM

GFLOPS

0 125 250 375 500

1	threads
2	threads
4	threads

V=324,	by=bz=4,	pxy=pxyz=1

Results: single node KNL (A)

12

Wilson	BiCGStab

SOA	4

DDR

MCDRAM

SOA	8

Haswell	Dual	Socket

DDR

MCDRAM

MCDRAM	+	Sfw	+	Hw	Prefetch

MCDRAM	+	Sfw	-	Hw	Prefetch

SOA	16

DDR

MCDRAM

GFLOPS

0 100 200 300 400

1	threads
2	threads
4	threads

V=324,	by=bz=4,	pxy=pxyz=1

Results: thread scaling (B)

13

note:	we	did	not	tune	layout	parameter	for		
optimal	performance	at	given	number	of	threads

Comparison: AVX512 vs. AVX2 (B)

14

• AVX512	dslash	does	not	contain	AVX2	intrinsics	except	for	_mm_prefetch	
• no	gather	intrinsics	used,	data	properly	packed	
• extensive	use	of	fused	multiply-adds

Comparison: AVX512 vs. AVX2 (B)

14

consistent	20%	speedup	in	all	our	kernels

Test system: weak scaling

• Knight’s	landing:	
‣ KNL	configuration	B	
‣ Intel(R)	OPA	Host	Fabric	Interface:	Series	100	ASIC	(B0	silicon)	
‣ Intel(R)	OPA	Switch:	Series	100	Edge	Switch	-	48	port	(B0	silicon)	
‣ Intel	MPI	5.1.2	(not	most	optimal	choice,	OpenMPI	10.0.1.50	
works	better	according	to	Intel)	

• Haswell:	
‣ NERSC	Cori	Phase	1,	Cray	XC	
‣ Dual	socket	Haswell,	32	cores@2.3	Ghz	
‣ 128	GB	DDR	
‣ Cray	Aries	Interconnect	with	dragonfly	topology

15

Weak Scaling HSW vs. KNL (B)

16

Vsocket=324,	bx=by=8,	pxy=pxyz=0,	SOA=8,	32	threads/socket

Weak Scaling HSW vs. KNL (B)

16
additional	communication	in	z-direction

Vsocket=324,	bx=by=8,	pxy=pxyz=0,	SOA=8,	32	threads/socket

Weak Scaling HSW vs. KNL (B)

16
additional	communication	in	z-direction

4X	speedup

Vsocket=324,	bx=by=8,	pxy=pxyz=0,	SOA=8,	32	threads/socket

Conclusions

• single	node	optimizations	of	QPhiX	for	Intel	XeonPhi	
Knight’s	Landing	microarchitecture	

• good	thread	scaling	
• sustained	max	single-node	performance	of	505	
GFLOPS/s	(Dslash)	from	MCDRAM	

• good	weak	scaling	up	to	16	KNL	sockets,	3.5-4x	
improvement	over	16	HSW	sockets	

• QPhiX	is	ready	for	Intel	Knight’s	Landing

17

Outlook

• AI	of	2.29,	MCDRAM	BW	of	450	GB/s:	  
not	yet	at	our	performance	limit	(cache	misses?)	

• extend	scaling	study	to	O(1K)	sockets	
• measure	strong	scaling	
• explore	one-sided	communication	routines	
• explore	different	SNC	modes	with	MPI+OpenMP	
• integrate	into	USQCD	stack,	i.e.	plug	in	QDP-JIT	as	
backend

18

Thank you

19

Backup

20

QPhiX SMT Threads & Prefetching

• maximize	L1	
coherence,	i.e.	
loop	over	vectors	
in	y	and	z	

• prefetch	spinor	of	
next	site	

• prefetch	links	of	
next	site	

• prefetch	y	and	z	
neighbors	if	they	
are	off-core

21

Figure	by	Joo

TX

Y

Weak Scaling Cori Phase I

22

Vlocal=164:	bx=by=4,	pxy=pxyz=0,	SOA=8,	32	threads/socket	
Vlocal=324:	bx=by=8,	pxy=pxyz=0,	SOA=8,	32	threads/socket

